Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.013
Filtrar
1.
Nature ; 627(8003): 367-373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383788

RESUMO

The posterior parietal cortex exhibits choice-selective activity during perceptual decision-making tasks1-10. However, it is not known how this selective activity arises from the underlying synaptic connectivity. Here we combined virtual-reality behaviour, two-photon calcium imaging, high-throughput electron microscopy and circuit modelling to analyse how synaptic connectivity between neurons in the posterior parietal cortex relates to their selective activity. We found that excitatory pyramidal neurons preferentially target inhibitory interneurons with the same selectivity. In turn, inhibitory interneurons preferentially target pyramidal neurons with opposite selectivity, forming an opponent inhibition motif. This motif was present even between neurons with activity peaks in different task epochs. We developed neural-circuit models of the computations performed by these motifs, and found that opponent inhibition between neural populations with opposite selectivity amplifies selective inputs, thereby improving the encoding of trial-type information. The models also predict that opponent inhibition between neurons with activity peaks in different task epochs contributes to creating choice-specific sequential activity. These results provide evidence for how synaptic connectivity in cortical circuits supports a learned decision-making task.


Assuntos
Tomada de Decisões , Vias Neurais , Lobo Parietal , Sinapses , Cálcio/análise , Cálcio/metabolismo , Tomada de Decisões/fisiologia , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Aprendizagem/fisiologia , Microscopia Eletrônica , Inibição Neural , Vias Neurais/fisiologia , Vias Neurais/ultraestrutura , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Lobo Parietal/ultraestrutura , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Realidade Virtual , Modelos Neurológicos
2.
Science ; 377(6602): eabo0924, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35737810

RESUMO

The human cerebral cortex houses 1000 times more neurons than that of the cerebral cortex of a mouse, but the possible differences in synaptic circuits between these species are still poorly understood. We used three-dimensional electron microscopy of mouse, macaque, and human cortical samples to study their cell type composition and synaptic circuit architecture. The 2.5-fold increase in interneurons in humans compared with mice was compensated by a change in axonal connection probabilities and therefore did not yield a commensurate increase in inhibitory-versus-excitatory synaptic input balance on human pyramidal cells. Rather, increased inhibition created an expanded interneuron-to-interneuron network, driven by an expansion of interneuron-targeting interneuron types and an increase in their synaptic selectivity for interneuron innervation. These constitute key neuronal network alterations in the human cortex.


Assuntos
Córtex Cerebral , Conectoma , Animais , Córtex Cerebral/ultraestrutura , Humanos , Interneurônios/ultraestrutura , Macaca , Camundongos , Células Piramidais/ultraestrutura
3.
Proc Natl Acad Sci U S A ; 119(11): e2114476119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263225

RESUMO

SignificanceChandelier cells (ChCs) are a unique type of GABAergic interneuron that form axo-axonic synapses exclusively on the axon initial segment (AIS) of neocortical pyramidal neurons (PyNs), allowing them to exert powerful yet precise control over PyN firing and population output. The importance of proper ChC function is further underscored by the association of ChC connectivity defects with various neurological conditions. Despite this, the cellular mechanisms governing ChC axo-axonic synapse formation remain poorly understood. Here, we identify microglia as key regulators of ChC axonal morphogenesis and AIS synaptogenesis, and show that disease-induced aberrant microglial activation perturbs proper ChC synaptic development/connectivity in the neocortex. In doing so, such findings highlight the therapeutic potential of manipulating microglia to ensure proper brain wiring.


Assuntos
Segmento Inicial do Axônio , Neurônios GABAérgicos , Microglia , Células Piramidais , Sinapses , Animais , Segmento Inicial do Axônio/fisiologia , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/ultraestrutura , Camundongos , Microglia/fisiologia , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Sinapses/fisiologia
4.
Elife ; 102021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851292

RESUMO

Inhibitory neurons in mammalian cortex exhibit diverse physiological, morphological, molecular, and connectivity signatures. While considerable work has measured the average connectivity of several interneuron classes, there remains a fundamental lack of understanding of the connectivity distribution of distinct inhibitory cell types with synaptic resolution, how it relates to properties of target cells, and how it affects function. Here, we used large-scale electron microscopy and functional imaging to address these questions for chandelier cells in layer 2/3 of the mouse visual cortex. With dense reconstructions from electron microscopy, we mapped the complete chandelier input onto 153 pyramidal neurons. We found that synapse number is highly variable across the population and is correlated with several structural features of the target neuron. This variability in the number of axo-axonic ChC synapses is higher than the variability seen in perisomatic inhibition. Biophysical simulations show that the observed pattern of axo-axonic inhibition is particularly effective in controlling excitatory output when excitation and inhibition are co-active. Finally, we measured chandelier cell activity in awake animals using a cell-type-specific calcium imaging approach and saw highly correlated activity across chandelier cells. In the same experiments, in vivo chandelier population activity correlated with pupil dilation, a proxy for arousal. Together, these results suggest that chandelier cells provide a circuit-wide signal whose strength is adjusted relative to the properties of target neurons.


Assuntos
Células Piramidais/ultraestrutura , Sinapses/ultraestrutura , Córtex Visual/ultraestrutura , Animais , Feminino , Masculino , Camundongos , Microscopia Eletrônica de Transmissão
5.
Mol Brain ; 14(1): 158, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645511

RESUMO

Alterations in the canonical processing of Amyloid Precursor Protein generate proteoforms that contribute to the onset of Alzheimer's Disease. Modified composition of γ-secretase or mutations in its subunits has been directly linked to altered generation of Amyloid beta. Despite biochemical evidence about the role of γ-secretase in the generation of APP, the molecular origin of how spatial heterogeneity in the generation of proteoforms arises is not well understood. Here, we evaluated the localization of Nicastrin, a γ-secretase subunit, at nanometer sized functional zones of the synapse. With the help of super resolution microscopy, we confirm that Nicastrin is organized into nanodomains of high molecular density within an excitatory synapse. A similar nanoorganization was also observed for APP and the catalytic subunit of γ-secretase, Presenilin 1, that were discretely associated with Nicastrin nanodomains. Though Nicastrin is a functional subunit of γ-secretase, the Nicastrin and Presenilin1 nanodomains were either colocalized or localized independent of each other. The Nicastrin and Presenilin domains highlight a potential independent regulation of these molecules different from their canonical secretase function. The collisions between secretases and substrate molecules decide the probability and rate of product formation for transmembrane proteolysis. Our observations of secretase nanodomains indicate a spatial difference in the confinement of substrate and secretases, affecting the local probability of product formation by increasing their molecular availability, resulting in differential generation of proteoforms even within single synapses.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Glicoproteínas de Membrana/química , Sinapses/química , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Endocitose , Neurônios GABAérgicos/química , Neurônios GABAérgicos/ultraestrutura , Microscopia/métodos , Proteínas do Tecido Nervoso/análise , Densidade Pós-Sináptica/química , Densidade Pós-Sináptica/ultraestrutura , Presenilina-1/química , Domínios Proteicos , Células Piramidais/química , Células Piramidais/ultraestrutura , Sinapses/ultraestrutura
6.
PLoS Biol ; 19(8): e3001375, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428203

RESUMO

Pyramidal neurons (PNs) are covered by thousands of dendritic spines receiving excitatory synaptic inputs. The ultrastructure of dendritic spines shapes signal compartmentalization, but ultrastructural diversity is rarely taken into account in computational models of synaptic integration. Here, we developed a 3D correlative light-electron microscopy (3D-CLEM) approach allowing the analysis of specific populations of synapses in genetically defined neuronal types in intact brain circuits. We used it to reconstruct segments of basal dendrites of layer 2/3 PNs of adult mouse somatosensory cortex and quantify spine ultrastructural diversity. We found that 10% of spines were dually innervated and 38% of inhibitory synapses localized to spines. Using our morphometric data to constrain a model of synaptic signal compartmentalization, we assessed the impact of spinous versus dendritic shaft inhibition. Our results indicate that spinous inhibition is locally more efficient than shaft inhibition and that it can decouple voltage and calcium signaling, potentially impacting synaptic plasticity.


Assuntos
Espinhas Dendríticas/ultraestrutura , Potenciais Pós-Sinápticos Excitadores , Potenciais Pós-Sinápticos Inibidores , Modelos Neurológicos , Células Piramidais/ultraestrutura , Animais , Sinalização do Cálcio , Espinhas Dendríticas/fisiologia , Feminino , Camundongos , Microscopia Eletrônica de Varredura/métodos , Plasticidade Neuronal , Gravidez , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/ultraestrutura
7.
Cereb Cortex ; 31(8): 3592-3609, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33723567

RESUMO

Pyramidal neurons are the most abundant and characteristic neuronal type in the cerebral cortex and their dendritic spines are the main postsynaptic elements of cortical excitatory synapses. Previous studies have shown that pyramidal cell structure differs across layers, cortical areas, and species. However, within the human cortex, the pyramidal dendritic morphology has been quantified in detail in relatively few cortical areas. In the present work, we performed intracellular injections of Lucifer Yellow at several distances from the temporal pole. We found regional differences in pyramidal cell morphology, which showed large inter-individual variability in most of the morphological variables measured. However, some values remained similar in all cases. The smallest and least complex cells in the most posterior temporal region showed the greatest dendritic spine density. Neurons in the temporal pole showed the greatest sizes with the highest number of spines. Layer V cells were larger, more complex, and had a greater number of dendritic spines than those in layer III. The present results suggest that, while some aspects of pyramidal structure are conserved, there are specific variations across cortical regions, and species.


Assuntos
Células Piramidais/ultraestrutura , Lobo Temporal/ultraestrutura , Adulto , Dendritos , Espinhas Dendríticas/ultraestrutura , Epilepsia/patologia , Epilepsia/cirurgia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Individualidade , Masculino , Pessoa de Meia-Idade , Neuroimagem , Neurônios/ultraestrutura , Lobo Temporal/citologia
8.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530380

RESUMO

Three-dimensional (3D) reconstruction from electron microscopy (EM) datasets is a widely used tool that has improved our knowledge of synapse ultrastructure and organization in the brain. Rearrangements of synapse structure following maturation and in synaptic plasticity have been broadly described and, in many cases, the defective architecture of the synapse has been associated to functional impairments. It is therefore important, when studying brain connectivity, to map these rearrangements with the highest accuracy possible, considering the affordability of the different EM approaches to provide solid and reliable data about the structure of such a small complex. The aim of this work is to compare quantitative data from two dimensional (2D) and 3D EM of mouse hippocampal CA1 (apical dendrites), to define whether the results from the two approaches are consistent. We examined asymmetric excitatory synapses focusing on post synaptic density and dendritic spine area and volume as well as spine density, and we compared the results obtained with the two methods. The consistency between the 2D and 3D results questions the need-for many applications-of using volumetric datasets (costly and time consuming in terms of both acquisition and analysis), with respect to the more accessible measurements from 2D EM projections.


Assuntos
Região CA1 Hipocampal/ultraestrutura , Espinhas Dendríticas/ultraestrutura , Células Piramidais/ultraestrutura , Animais , Imageamento Tridimensional , Camundongos , Microscopia Eletrônica , Sinapses/ultraestrutura
9.
Neurobiol Dis ; 150: 105253, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421563

RESUMO

Fragile X syndrome (FXS) is the most common form of intellectual disability that arises from the dysfunction of a single gene-Fmr1. The main neuroanatomical correlate of FXS is elevated dendritic spine density on cortical pyramidal neurons, which has been modeled in Fmr1-/Y mice. However, the cell-autonomous contribution of Fmr1 on cortical dendritic spine density has not been assessed. Even less is known about the role of Fmr1 in heterozygous female mosaic mice, which are a putative model for human Fmr1 full mutation carriers (i.e., are heterozygous for the full Fmr1-silencing mutation). In this neuroanatomical study, spine density in cortical pyramidal neurons of Fmr1+/- and Fmr1-/Y mice was studied at multiple subcellular compartments, layers, and brain regions. Spine density in Fmr1+/- mice is higher than WT but lower than Fmr1-/Y. Not all subcellular compartments in layer V Fmr1+/- and Fmr1-/Y cortical pyramidal neurons are equally affected: the apical dendrite, a key subcellular compartment, is principally affected over basal dendrites. Within apical dendrites, spine density is differentially affected across branch orders. Finally, identification of FMRP-positive and FMRP-negative neurons within Fmr1+/- permitted the study of the cell-autonomous effect of Fmr1 on spine density. Surprisingly, layer V cortical pyramidal spine density between FMRP-positive and FMRP-negative neurons does not differ, suggesting that the regulation of the primary neuroanatomical defect of FXS-elevated spine density-is non-cell-autonomous.


Assuntos
Espinhas Dendríticas/ultraestrutura , Proteína do X Frágil de Retardo Mental/genética , Células Piramidais/ultraestrutura , Animais , Córtex Cerebral/citologia , Córtex Cerebral/ultraestrutura , Feminino , Heterozigoto , Masculino , Camundongos , Camundongos Knockout , Mosaicismo , Inativação do Cromossomo X
10.
Nature ; 591(7848): 111-116, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33442056

RESUMO

In 1986, electron microscopy was used to reconstruct by hand the entire nervous system of a roundworm, the nematode Caenorhabditis elegans1. Since this landmark study, high-throughput electron-microscopic techniques have enabled reconstructions of much larger mammalian brain circuits at synaptic resolution2,3. Nevertheless, it remains unknown how the structure of a synapse relates to its physiological transmission strength-a key limitation for inferring brain function from neuronal wiring diagrams. Here we combine slice electrophysiology of synaptically connected pyramidal neurons in the mouse somatosensory cortex with correlated light microscopy and high-resolution electron microscopy of all putative synaptic contacts between the recorded neurons. We find a linear relationship between synapse size and strength, providing the missing link in assigning physiological weights to synapses reconstructed from electron microscopy. Quantal analysis also reveals that synapses contain at least 2.7 neurotransmitter-release sites on average. This challenges existing release models and provides further evidence that neocortical synapses operate with multivesicular release4-6, suggesting that they are more complex computational devices than thought, and therefore expanding the computational power of the canonical cortical microcircuitry.


Assuntos
Neocórtex/citologia , Neocórtex/ultraestrutura , Sinapses/fisiologia , Sinapses/ultraestrutura , Transmissão Sináptica , Animais , Tamanho Celular , Fenômenos Eletrofisiológicos , Masculino , Camundongos , Microscopia , Microscopia Eletrônica , Neurotransmissores/metabolismo , Células Piramidais/citologia , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Córtex Somatossensorial/citologia , Córtex Somatossensorial/ultraestrutura
11.
Nature ; 590(7844): 111-114, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33328635

RESUMO

Single neocortical neurons are driven by populations of excitatory inputs, which form the basis of neuronal selectivity to features of sensory input. Excitatory connections are thought to mature during development through activity-dependent Hebbian plasticity1, whereby similarity between presynaptic and postsynaptic activity selectively strengthens some synapses and weakens others2. Evidence in support of this process includes measurements of synaptic ultrastructure and in vitro and in vivo physiology and imaging studies3-8. These corroborating lines of evidence lead to the prediction that a small number of strong synaptic inputs drive neuronal selectivity, whereas weak synaptic inputs are less correlated with the somatic output and modulate activity overall6,7. Supporting evidence from cortical circuits, however, has been limited to measurements of neighbouring, connected cell pairs, raising the question of whether this prediction holds for a broad range of synapses converging onto cortical neurons. Here we measure the strengths of functionally characterized excitatory inputs contacting single pyramidal neurons in ferret primary visual cortex (V1) by combining in vivo two-photon synaptic imaging and post hoc electron microscopy. Using electron microscopy reconstruction of individual synapses as a metric of strength, we find no evidence that strong synapses have a predominant role in the selectivity of cortical neuron responses to visual stimuli. Instead, selectivity appears to arise from the total number of synapses activated by different stimuli. Moreover, spatial clustering of co-active inputs appears to be reserved for weaker synapses, enhancing the contribution of weak synapses to somatic responses. Our results challenge the role of Hebbian mechanisms in shaping neuronal selectivity in cortical circuits, and suggest that selectivity reflects the co-activation of large populations of presynaptic neurons with similar properties and a mixture of strengths.


Assuntos
Vias Neurais , Células Piramidais/metabolismo , Sinapses/metabolismo , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Feminino , Furões , Microscopia Eletrônica de Varredura , Modelos Neurológicos , Estimulação Luminosa , Células Piramidais/ultraestrutura , Sinapses/ultraestrutura
12.
Cereb Cortex ; 31(5): 2610-2624, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33350443

RESUMO

Synapses are the fundamental elements of the brain's complicated neural networks. Although the ultrastructure of synapses has been extensively studied, the difference in how synaptic inputs are organized onto distinct neuronal types is not yet fully understood. Here, we examined the cell-type-specific ultrastructure of proximal processes from the soma of parvalbumin-positive (PV+) and somatostatin-positive (SST+) GABAergic neurons in comparison with a pyramidal neuron in the mouse primary visual cortex (V1), using serial block-face scanning electron microscopy. Interestingly, each type of neuron organizes excitatory and inhibitory synapses in a unique way. First, we found that a subset of SST+ neurons are spiny, having spines on both soma and dendrites. Each of those spines has a highly complicated structure that has up to eight synaptic inputs. Next, the PV+ and SST+ neurons receive more robust excitatory inputs to their perisoma than does the pyramidal neuron. Notably, excitatory synapses on GABAergic neurons were often multiple-synapse boutons, making another synapse on distal dendrites. On the other hand, inhibitory synapses near the soma were often single-targeting multiple boutons. Collectively, our data demonstrate that synaptic inputs near the soma are differentially organized across cell types and form a network that balances inhibition and excitation in the V1.


Assuntos
Neurônios GABAérgicos/ultraestrutura , Células Piramidais/ultraestrutura , Sinapses/ultraestrutura , Córtex Visual/ultraestrutura , Animais , Neurônios GABAérgicos/metabolismo , Imageamento Tridimensional , Camundongos , Microscopia Eletrônica de Varredura , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , Somatostatina/metabolismo
13.
Cereb Cortex ; 31(4): 2205-2219, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33251537

RESUMO

Changes in the shape and size of the dendritic spines are critical for synaptic transmission. These morphological changes depend on dynamic assembly of the actin cytoskeleton and occur differently in various types of neurons. However, how the actin dynamics are regulated in a neuronal cell type-specific manner remains largely unknown. We show that Fhod3, a member of the formin family proteins that mediate F-actin assembly, controls the dendritic spine morphogenesis of specific subpopulations of cerebrocortical pyramidal neurons. Fhod3 is expressed specifically in excitatory pyramidal neurons within layers II/III and V of restricted areas of the mouse cerebral cortex. Immunohistochemical and biochemical analyses revealed the accumulation of Fhod3 in postsynaptic spines. Although targeted deletion of Fhod3 in the brain did not lead to any defects in the gross or histological appearance of the brain, the dendritic spines in pyramidal neurons within presumptive Fhod3-positive areas were morphologically abnormal. In primary cultures prepared from the Fhod3-depleted cortex, defects in spine morphology were only detected in Fhod3 promoter-active cells, a small population of pyramidal neurons, and not in Fhod3 promoter-negative pyramidal neurons. Thus, Fhod3 plays a crucial role in dendritic spine morphogenesis only in a specific population of pyramidal neurons in a cell type-specific manner.


Assuntos
Córtex Cerebral/metabolismo , Espinhas Dendríticas/metabolismo , Forminas/biossíntese , Células Piramidais/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/ultraestrutura , Espinhas Dendríticas/genética , Espinhas Dendríticas/ultraestrutura , Forminas/genética , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Células Piramidais/ultraestrutura
14.
J Neurosci ; 40(45): 8746-8766, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33046553

RESUMO

Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein critical for normal brain function, and both depletion and overexpression of MeCP2 lead to severe neurodevelopmental disease, Rett syndrome (RTT) and MECP2 multiplication disorder, respectively. However, the molecular mechanism by which abnormal MeCP2 dosage causes neuronal dysfunction remains unclear. As MeCP2 expression is nearly equivalent to that of core histones and because it binds DNA throughout the genome, one possible function of MeCP2 is to regulate the 3D structure of chromatin. Here, to examine whether and how MeCP2 levels impact chromatin structure, we used high-resolution confocal and electron microscopy and examined heterochromatic foci of neurons in mice. Using models of RTT and MECP2 triplication syndrome, we found that the heterochromatin structure was significantly affected by the alteration in MeCP2 levels. Analysis of mice expressing either MeCP2-R270X or MeCP2-G273X, which have nonsense mutations in the upstream and downstream regions of the AT-hook 2 domain, respectively, showed that the magnitude of heterochromatin changes was tightly correlated with the phenotypic severity. Postnatal alteration in MeCP2 levels also induced significant changes in the heterochromatin structure, which underscored importance of correct MeCP2 dosage in mature neurons. Finally, functional analysis of MeCP2-overexpressing mice showed that the behavioral and transcriptomic alterations in these mice correlated significantly with the MeCP2 levels and occurred in parallel with the heterochromatin changes. Taken together, our findings demonstrate the essential role of MeCP2 in regulating the 3D structure of neuronal chromatin, which may serve as a potential mechanism that drives pathogenesis of MeCP2-related disorders.SIGNIFICANCE STATEMENT Neuronal function is critically dependent on methyl-CpG binding protein 2 (MeCP2), a nuclear protein abundantly expressed in neurons. The importance of MeCP2 is underscored by the severe childhood neurologic disorders, Rett syndrome (RTT) and MECP2 multiplication disorders, which are caused by depletion and overabundance of MeCP2, respectively. To clarify the molecular function of MeCP2 and to understand the pathogenesis of MECP2-related disorders, we performed detailed structural analyses of neuronal nuclei by using mouse models and high-resolution microscopy. We show that the level of MeCP2 critically regulates 3D structure of heterochromatic foci, and this is mediated in part by the AT-hook 2 domain of MeCP2. Our results demonstrate that one primary function of MeCP2 is to regulate chromatin structure.


Assuntos
Cromatina/química , Proteína 2 de Ligação a Metil-CpG , Neurônios/patologia , Estrutura Terciária de Proteína/genética , Animais , Nucléolo Celular/genética , Nucléolo Celular/ultraestrutura , Córtex Cerebral/patologia , Córtex Cerebral/ultraestrutura , Cromatina/ultraestrutura , Códon sem Sentido/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Feminino , Histonas/metabolismo , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/ultraestrutura , Ligação Proteica , Células Piramidais/patologia , Células Piramidais/ultraestrutura , Transcriptoma/genética
15.
Nat Neurosci ; 23(12): 1637-1643, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32929244

RESUMO

Imaging neuronal networks provides a foundation for understanding the nervous system, but resolving dense nanometer-scale structures over large volumes remains challenging for light microscopy (LM) and electron microscopy (EM). Here we show that X-ray holographic nano-tomography (XNH) can image millimeter-scale volumes with sub-100-nm resolution, enabling reconstruction of dense wiring in Drosophila melanogaster and mouse nervous tissue. We performed correlative XNH and EM to reconstruct hundreds of cortical pyramidal cells and show that more superficial cells receive stronger synaptic inhibition on their apical dendrites. By combining multiple XNH scans, we imaged an adult Drosophila leg with sufficient resolution to comprehensively catalog mechanosensory neurons and trace individual motor axons from muscles to the central nervous system. To accelerate neuronal reconstructions, we trained a convolutional neural network to automatically segment neurons from XNH volumes. Thus, XNH bridges a key gap between LM and EM, providing a new avenue for neural circuit discovery.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neurônios/ultraestrutura , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Córtex Cerebral/ultraestrutura , Dendritos/fisiologia , Dendritos/ultraestrutura , Drosophila melanogaster , Feminino , Holografia , Imageamento Tridimensional , Aprendizado de Máquina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Músculo Esquelético/inervação , Músculo Esquelético/ultraestrutura , Nanotecnologia , Redes Neurais de Computação , Células Piramidais/ultraestrutura , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/ultraestrutura , Tomografia
16.
Sci Rep ; 10(1): 11405, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647191

RESUMO

Previously, we found that in dissociated hippocampal cultures the proportion of large spines (head diameter ≥ 0.6 µm) was larger in cultures from female than from male animals. In order to rule out that this result is an in vitro phenomenon, we analyzed the density of large spines in fixed hippocampal vibratome sections of Thy1-GFP mice, in which GFP is expressed only in subpopulations of neurons. We compared spine numbers of the four estrus cycle stages in females with those of male mice. Remarkably, total spine numbers did not vary during the estrus cycle, while estrus cyclicity was evident regarding the number of large spines and was highest during diestrus, when estradiol levels start to rise. The average total spine number in females was identical with the spine number in male animals. The density of large spines, however, was significantly lower in male than in female animals in each stage of the estrus cycle. Interestingly, the number of spine apparatuses, a typical feature of large spines, did not differ between the sexes. Accordingly, NMDA-R1 and NMDA-R2A/B expression were lower in the hippocampus and in postsynaptic density fractions of adult male animals than in those of female animals. This difference could already be observed at birth for NMDA-R1, but not for NMDA-R2A/B expression. In dissociated embryonic hippocampal cultures, no difference was seen after 21 days in culture, while the difference was evident in postnatal cultures. Our data indicate that hippocampal neurons are differentiated in a sex-dependent manner, this differentiation being likely to develop during the perinatal period.


Assuntos
Região CA1 Hipocampal/citologia , Espinhas Dendríticas/ultraestrutura , Caracteres Sexuais , Envelhecimento , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/crescimento & desenvolvimento , Células Cultivadas , Estro , Feminino , Genes Reporter , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Cultura Primária de Células , Células Piramidais/ultraestrutura , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/análise
17.
Neuron ; 107(3): 509-521.e7, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32492366

RESUMO

Post-tetanic potentiation (PTP) is an attractive candidate mechanism for hippocampus-dependent short-term memory. Although PTP has a uniquely large magnitude at hippocampal mossy fiber-CA3 pyramidal neuron synapses, it is unclear whether it can be induced by natural activity and whether its lifetime is sufficient to support short-term memory. We combined in vivo recordings from granule cells (GCs), in vitro paired recordings from mossy fiber terminals and postsynaptic CA3 neurons, and "flash and freeze" electron microscopy. PTP was induced at single synapses and showed a low induction threshold adapted to sparse GC activity in vivo. PTP was mainly generated by enlargement of the readily releasable pool of synaptic vesicles, allowing multiplicative interaction with other plasticity forms. PTP was associated with an increase in the docked vesicle pool, suggesting formation of structural "pool engrams." Absence of presynaptic activity extended the lifetime of the potentiation, enabling prolonged information storage in the hippocampal network.


Assuntos
Memória de Curto Prazo/fisiologia , Fibras Musgosas Hipocampais/metabolismo , Plasticidade Neuronal/fisiologia , Células Piramidais/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Potenciais de Ação/fisiologia , Animais , Região CA3 Hipocampal/citologia , Giro Denteado/citologia , Camundongos , Microscopia Eletrônica , Fibras Musgosas Hipocampais/fisiologia , Fibras Musgosas Hipocampais/ultraestrutura , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Ratos , Sinapses/fisiologia , Potenciais Sinápticos/fisiologia
18.
Neuron ; 107(3): 522-537.e6, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32464088

RESUMO

Dendritic spinules are thin protrusions, formed by neuronal spines, not adequately resolved by diffraction-limited light microscopy, which has limited our understanding of their behavior. Here we performed rapid structured illumination microscopy and enhanced resolution confocal microscopy to study spatiotemporal spinule dynamics in cortical pyramidal neurons. Spinules recurred at the same locations on mushroom spine heads. Most were short-lived, dynamic, exploratory, and originated near simple PSDs, whereas a subset was long-lived, elongated, and associated with complex PSDs. These subtypes were differentially regulated by Ca2+ transients. Furthermore, the postsynaptic Rac1-GEF kalirin-7 regulated spinule formation, elongation, and recurrence. Long-lived spinules often contained PSD fragments, contacted distal presynaptic terminals, and formed secondary synapses. NMDAR activation increased spinule number, length, and contact with distal presynaptic elements. Spinule subsets, dynamics, and recurrence were validated in cortical neurons of acute brain slices. Thus, we identified unique properties, regulatory mechanisms, and functions of spinule subtypes, supporting roles in neuronal connectivity.


Assuntos
Espinhas Dendríticas/ultraestrutura , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Densidade Pós-Sináptica/ultraestrutura , Células Piramidais/ultraestrutura , Sinapses/ultraestrutura , Animais , Cálcio/metabolismo , Córtex Cerebral/citologia , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Imageamento Tridimensional , Camundongos , Microscopia Confocal , Densidade Pós-Sináptica/fisiologia , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/agonistas , Análise Espaço-Temporal , Sinapses/fisiologia
19.
FASEB J ; 34(5): 6965-6983, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32237183

RESUMO

Microtubule-associated protein (MAP) 2 has been perceived as a static cytoskeletal protein enriched in neuronal dendritic shafts. Emerging evidence indicates dynamic functions for various MAPs in activity-dependent synaptic plasticity. However, it is unclear how MAP2 is associated with synaptic plasticity mechanisms. Here, we demonstrate that specific silencing of high-molecular-weight MAP2 in vivo abolished induction of long-term potentiation (LTP) in the Schaffer collateral pathway of CA1 pyramidal neurons and in vitro blocked LTP-induced surface delivery of AMPA receptors and spine enlargement. In mature hippocampal neurons, we observed rapid translocation of a subpopulation of MAP2, present in dendritic shafts, to spines following LTP stimulation. Time-lapse confocal imaging showed that spine translocation of MAP2 was coupled with LTP-induced spine enlargement. Consistently, immunogold electron microscopy revealed that LTP stimulation of the Schaffer collateral pathway promoted MAP2 labeling in spine heads of CA1 neurons. This translocation depended on NMDA receptor activation and Ras-MAPK signaling. Furthermore, LTP stimulation led to an increase in surface-expressed AMPA receptors specifically in the neurons with MAP2 spine translocation. Altogether, this study indicates a novel role for MAP2 in LTP mechanisms and suggests that MAP2 participates in activity-dependent synaptic plasticity in mature hippocampal networks.


Assuntos
Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Potenciação de Longa Duração/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Células Piramidais/metabolismo , Animais , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Microscopia Imunoeletrônica , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Plasticidade Neuronal/fisiologia , Transporte Proteico , Células Piramidais/ultraestrutura , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Receptores de AMPA/metabolismo
20.
Neuron ; 106(4): 566-578.e8, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32169170

RESUMO

The balance between excitatory and inhibitory (E and I) synapses is thought to be critical for information processing in neural circuits. However, little is known about the spatial principles of E and I synaptic organization across the entire dendritic tree of mammalian neurons. We developed a new open-source reconstruction platform for mapping the size and spatial distribution of E and I synapses received by individual genetically-labeled layer 2/3 (L2/3) cortical pyramidal neurons (PNs) in vivo. We mapped over 90,000 E and I synapses across twelve L2/3 PNs and uncovered structured organization of E and I synapses across dendritic domains as well as within individual dendritic segments. Despite significant domain-specific variation in the absolute density of E and I synapses, their ratio is strikingly balanced locally across dendritic segments. Computational modeling indicates that this spatially precise E/I balance dampens dendritic voltage fluctuations and strongly impacts neuronal firing output.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Sinapses , Animais , Dendritos/fisiologia , Dendritos/ultraestrutura , Humanos , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Software , Sinapses/fisiologia , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...